MBSE in der elektrotechnischen Systementwicklung

Vom Modell zu Implementierung
Menu

Der Schlüssel zum Digital Engineering

MBSE für die elektrische Systementwicklung ist ein Schlüsselfaktor bei der Einführung einer Digital Engineering Methodik. Das Modell wird in elektrische Subsysteme zerlegt, die im Zuge der Implementierung in eine physikalische Auslegung überführt werden können. Die Nutzung des vollständigen Modells des Subsystems in der Detailentwicklung ist einer der wichtigsten Erfolgsfaktoren bei der Einführung einer MBSE-gestützten Methodik.

Implementierung des Modells

Ein relevantes Modell

Die Übergabe des Modells an die Detailentwicklung ermöglicht eine Nutzung im gesamten Entwicklungszyklus

Abgesicherter Gestaltungsrahmen

Das Modell definiert die Rahmenbedingungen für die physikalische Konstruktion (Digital Envelope)

Konsistente Umsetzung von Änderungen am Modell

Änderungen am Modell werden vom Systems Engineering an die Detailentwicklung weitergegeben

Single Source of Truth

Die Anwendung dieser Methode bietet eine sichere eine zuverlässige Quelle für gesicherte Informationen (Single Source of Truth)

Abgesicherte Rahmenbedinungen

Der optimale Modellinhalt für den Entwurf elektrischer Subsysteme ist ein Spiegelbild Ihres Entwurfsprozesses. Das Modell wird verwendet, um den Gestaltungsrahmen zu definieren, nicht die Implementierung. Herstellungs-Teilenummern und Drahtstärke sind deshalb nicht Teil des Modells. Dokumentierte Vorgaben für Gewicht, Kosten und andere Anforderungen bieten einen sicheren Rahmen für die Gestaltung des Designs.

Model content

MBSE transition to detailed design

Übergabe an die Detailentwicklung

Der Gestaltungsrahmen (Design Envelope) wird über eine Importroutine von GENESYS an E3.series übergeben.  Die logische Architektur wird dabei an E3.series weitergegeben, und dient dort als Grundlage für die Implentierung der Verbindungsstruktur.

Über eine Schnittstelle zwischen E3.series und dem Modell können die Konstrukteure Anforderungen, Diagramme und Parameter einsehen.  Diese Informationen werden allerdings nur bereitgestellt und sind nicht änderbar, um die Integrität des Modells als belastbare Referenzgröße zu erhalten.

Anforderungen, die bei der Detaillierung nicht erfüllt werden können, werden diese über einen Anforderungsstatus an das Systems Engineering zurückgemeldet.

Verifikation der Architektur

Das Modell, das dem Konstruktionsteam übergeben wurde, enthält Anforderungen und Strukturvorgaben. Das Designteam muss verifizieren, dass die Gestaltungsvorgaben durch die Implementierung realisierbar ist und dass sie nicht zu stark eingeengt wird. Die Architektur muss mit dem Modell abgeglichen werden, bevor mit dem Detailentwurf begonnen wird. Wenn eine Gewichts-, Leistungs- oder Kostenanforderung in der Architekturphase nicht erfüllt werden kann, müssen die Diskrepanzen mit Systems Engineering geklärt werden.

Design and Verification for MBSE

updating the digital engineering model for MBSE

Aktualisierung des Modells

Ein Grundsatz des Digital Engineerings ist, dass das Modell während des gesamten Produktlebenszyklus relevant bleiben muss.  Um das Modell relevant zu halten, muss der Status der Verifikationsanforderung in jeder Entwurfsphase oder an jedem Verifikationstor dokumentiert werden.  Auf diese Weise kann Systems Engineering oder das technische Management kann den Status der Verifikations-Anforderungen regelmäßig überprüfen, um den Fortschritt des Entwicklungsprozesses festzustellen.

MBSE und Datenmanagement

Die Digital Engineering Methode macht die Ablösung von Papierdokumentationen durch ein Datenverwaltungssystem erforderlich.  Die Sicherung einer zentralen Informationsquelle und die Minimierung der Duplizierung von Daten in verschiedenen Systemen ist für einen erfolgreichen Digital Engineering-Prozess von größter Bedeutung. Eine MBSE-Datenverwaltungsumgebung besteht aus dem MBSE-Tool, einem Engineering Data Management (PDM)-System, einem PLM-System und einem Digital Tread Backbone für die digitale Kommunikation.  Jeder Datenstrang dient einem bestimmten Zweck und sollte getrennt bleiben.

data mangement threads for MBSE

Das Modell im Produktentstehungsprozess

Erstellung des Modells

Die Modellerstellung mit GENESYS von Vitech bietet die Möglichkeit der Anbindung an Zukens E3.series Entwicklungsumgebung für die Kabelplanung und Schaltschrankentwicklung.

Die Beachtung von Designrichtlinien, die mit GENESYS definiert und verifziert werden können, bietet einen strukturierten Weg zur Implementierung, bei dem das Modell über den gesamten Produktlebenszyklus hinweg als Grundlage für alle Entscheidungen dient

Gliederung des Modells

Für die Realisierung des Modells im elektrischen und elektronischen Bereich muss das Modell in Subsysteme unterteilt werden. Diese Subsysteme werden weiter in funktionale Elemente wie elektronische Steuereinheiten (ECU), Sensoren, Busse und Verbindungen untergliedert.

Definition des Modellinhalts

Die Realisierung des Modells im elektrischen und elektronischen Bereich erfordert eine logische Struktur von Elementen mit den damit verbundenen Verhaltens- und Anforderungsbeschreibungen. Das Modell enthält in der Regel keine Teilenummern oder andere spezifische Komponenteninformationen.

Vorgabe des Gestaltungsrahmens

Beim Übergang des Entwurfs vom System-Engineering zur Implementierungsteam muss der Gestaltungsrahmen (Design Envelope) klar definiert werden. Das Designteam hat dadurch Zugriff auf alle definierten Parameter wie Kosten, Gewicht, Größe, Leistung usw.

Übergabe an die Detailkonstruktion

Wenn der Gestaltungsrahmen (Design Envelope) für die Verkabelung definiert ist, wird die aus Blöcken und Schnittstellen bestehende Architektur auf E3.series übertragen. Alle Anforderungen, Einschränkungen und Diagramme werden offengelegt und können von E3.series aus eingesehen werden.

Modell und Detailkonstruktion

Das Konstruktionsteam kann Diagramme, Anforderungen und Parameter von E3.series einsehen.  Die Daten werden nicht an E3.series übertragen, um das Modell als relevante Bezugsgröße für Verifkationszwecke zu erhalten.

Modell und Architekturverifikation

Die Architekturverifikation ist ein Schritt vor der Detailkonstruktion. Dabei wird ein nur in Teilen ausgeführtes Konzept verwendet, um zu verifizieren, dass die Modellanforderungen mit hoher Zuverlässigkeit erfüllt werden können.  Wenn eine Anforderung in dieser Phase nicht erfüllt werden kann, muss das Systems Engineering das Modell im Kontext des Gesamtsystems ändern, um eine realisierbare Implementierung des Moduls zu ermöglichen.

Modellverifikation und Quality Gates

Das Modell muss während des gesamten Produktentwicklungsprozesses relevant bleiben. Dies wird durch formale Quality Gate Prüfungen erreicht, bei denen definierte Verifikationsanforderungen geprüft werden. Die Konstruktion kann erst dann in die nächste Entwicklungsphase übergehen, wenn die Quality-Gate-Anforderungen erfüllt sind.  Dadurch wird sichergestellt, dass das Produkt und das Modell konsistent sind.

Relevanz des Modells

Nach jedem Design Verification Gate muss das Modell aktualisiert werden, um den aktuellen Status der Verifikationsanforderung abzubilden. Auf diese Weise kann der Entwurfsfortschritt von Seiten des Systems Engineering auf die Erfüllung der Verifikationsanforderungen überprüft und die Konsistenz des Modells abgesichert werden

Das digitale Protokoll

 

Alle Entscheidungen und Absprachen, die während des gesamten Digital Engineering-Prozesses getroffen werden, müssen aufgezeichnet und zur Nachvollziehbarkeit in einem digitalen Protokoll (Digital Thread) aufbewahrt werden. Der Digital Thread bietet den Mechanismus, um diese wichtigen Diskussionen in digitaler Form zu führen.

Haben Sie eine Frage? - Kontaktieren Sie Zuken

Für weitere Informationen darüber, wie Zuken Ihren Designprozess unterstützen kann, kontaktieren Sie Zuken
Kontaktieren Sie uns