Back drilling vias: Save cost on buried vias and control cross talk

Menu

Back drilling vias is a cost-effective alternative to buried vias in multi-layer board manufacturing. While blind and buried vias require separate drilling and plating operations for the related inner layers, it is certainly a cheaper alternative to simply drill and plate through all layers of a multilayer board.

The downside of this approach, however, is represented by undesirable antenna and cross talk effects that will be caused by the unconnected parts of the vias at elevated clock speeds. To eliminate these parasitic effects, the unused via stubs need to be drilled out to a defined depth during the final phase of board production. This process is referred to as back drilling.

back drilling

How to define back drilling parameters in CR-8000 Design Force

With CR-8000 Design Force from Zuken, the back drilling of vias is no longer an afterthought during board production. It becomes an integral part of board design. And here is how it works:

  1. Set back-drilling conditions: Define the maximum admissible stub length in the rule editor of CR-8000 Design Force
  2. Extract pad-stack and define drill hole specifications
  3. Specify drill diameter and drill layer in back-drill information list
  4. Output drill data

back drilling via

These and more features are all part of the release 2020 of Zuken’s CR-8000 3D multi-board design tool suite.

Discover CR-8000

save costs on buried vias

Klaus Wiedemann
Klaus Wiedemann
Marketing Manager Europe
Klaus Wiedemann is responsible for Marketing and Communications across Europe covering web content, public relations and marketing programs. He works with product management, technical experts and customers to align and communicate Zuken products solutions with market needs. Klaus is an avid reader of classic literature, but he also likes to tinker with old bicycles and motorbikes.
  • Blog
December 13, 2021
High Speed Design Demystified: LPDDR4 Design Explained

A trend towards low power design prevails in the electronics industry today and is not likely to change in the near future. This development is driven by many reasons but primarily by the performance and storage density demands of mobile devices, where a reduction of the power consumption is crucial to extending battery life without sacrificing the bandwidth. This comprehensive guide helps you mitigate LPDDR4 Design.

Read now
  • Webinar
September 15, 2021
CR-8000 with the Ansys Electronic Desktop

This webinar will introduce the use of the Ansys Electronic Database (EDB) format to share information from CR-8000 Design Force to Ansys, the advantages beyond the former ANF-based interface, and how this can help users be more effective and productive.

Watch Now
  • Webinar
August 18, 2021
IC Power Module Design with CR-8000 Design Force

The typical design flow for a power module is in MCAD, where only structural analysis is possible. Moving to a new design flow using CR-8000 Design Force also allows for electrical analysis too. This webinar will demonstrate the features and benefits of this new design flow.

Watch Now
  • Webinar
August 18, 2021
PCB Creepage Checking According to IPC Standards

Failing to adhere to Electrical insulation requirements could prevent your product from being released. Zuken's CR-8000 constraints management and safety standard checking tools can help you meet the required IPC standards.

Watch Now