Calculate Trace Length from Time Delay Value for High-speed Signals

How to Calculate Trace Length from Time Delay Value for High-speed Signals

Menu
To keep a good high-speed signal quality from driver to receiver on a PCB is not an easy task for designers. One of the most challenging issues is managing the propagation delay and relative time delay mismatches. To manage the time delays in PCB design, we need to know how to calculate trace length from time delay value in order to implement the PCB trace routing accordingly. Let me take you through the process…

Calculating signal speed on a PCB

According to physics, electromagnetic signals travel in a vacuum or through the air at the same speed as light, which is:

Vc = 3 x 108M/sec = 186,000 miles/second = 11.8 inch/nanosecond

A signal travels on a PCB transmission line at a slower speed, affected by the dielectric constant (Er) of the PCB material. The transmission line structure also affects the signal speed.

There are two general PCB trace structures [note*]: stripline and microstrip.

The formulas for calculating the signal speed on a PCB are given below:

Formula - Calculating PCB signal speed on striplines and microstrips

Where:

  • Vcis the velocity of light in a vacuum or through the air
  • Er is the dielectric constant of the PCB material
  • Ereffis the effective dielectric constant for microstrips; its value lies between 1 and Er, and is approximately given by:

Ereff≈(0.64 Er+ 0.36)     (1c)

With those formulas, we know that the speed of signals on a PCB is less than the signal speed through the air. If Er≈4 (like for FR4 material types), then the speed of signals on a stripline is half that of the speed through the air, i.e., it is about 6 in/ns.

How to calculate propagation delay (tpd)

The propagation delay is the time a signal takes to propagate over a unit length of the transmission line.

Here is how we can calculate the propagation delay from the trace length and vice versa:

Formula - How to calculate propagation delay

Where:

  • Vis the signal speed in the transmission line

In a vacuum or through the air, it equals 85 picoseconds/inch (ps/in).

On PCB transmission lines, the propagation delay is given by:

Formula - Calculating propagation delay in striplines and microstrips

Case study: Calculating trace length on a PCB

In order to be compliant with the specification of JEDEC, the maximum skew among all the signals shall be less than +/-2.5% of the clock period driven by the memory controller. All the signals of SDRAM are directly or indirectly referenced to the clock.

In this example, the normal FR4 material with a dielectric constant of 4 is used on the PCB with a differential clock rate of 1.2GHz (i.e., 833ps clock period):

Question: What is the maximum skew of the trace length for all the signals?

Answer: Max skew in time delay = +/-2.5% of the 833ps clock period = 20.825ps FR4 Er≈4, Ereff≈2.92

So, for strip lines, the maximum skew should be less than +/- (20.825/(85*SQT(4))=+/-0.1225 in = +/- 122.5 mil.

For microstrips, the maximum skew should be less than +/- (20.825/(85*SQT(2.92)) = +/-0.1433 in = +/- 143.3 mil.

Note*: Different microstrip and stripline structures will affect the signal speed, but only slightly.

Keep this information in mind the next time you’re calculating trace lengths; it should make the job a little easier for you.

References:
–  Signal Speed and Propagation Delay in a PCB Transmission Line, Atar Mittal
–  JEDEC 

Also see:

CR-8000 – PCB Design Software Overview

CR-8000 – PCB simulation and analysis

Lance Wang
Lance Wang
Solutions Architect
Lance Wang is a solutions architect in Zuken SOZO Center. He supports CR-8000 product line, mainly focusing on high-speed PCB design and signal integrity features. When not behind the keyboard or in front of customers, he is a Tom Brady fan and enjoys playing ping pong in the spare time.
  • Presse-Information
März 29, 2022
Yokogawa Electric führt CR-8000 von Zuken als neue Elektronik-Entwicklungsumgebung ein

Der führende Anbieter von industriellen Automatisierungs- und Testlösungen hat sich für CR-8000 und DS-CR entschieden, um seine elektronischen Designumgebungen neu zu gestalten.

Read now
  • Blog
Januar 24, 2022
Die Vermessung der Erde

EREMS, ein französisches Unternehmen, das sich auf elektronische Hightech-Ausrüstung und zugehörige Software für die Raumfahrt-, Verteidigungs- und Luftfahrtindustrie spezialisiert hat, verwendet CR-8000 und DS-CR von Zuken für die Entwicklung und das Lifecycle-Management von Flug- und Bodenelektronik sowie von Prüfständen.

Read now
  • Presse-Information
Dezember 14, 2021
Zuken-Schnittstelle für SAP S/4HANA zertifiziert

Auf Basis dieser Integration können Zuken-Daten und Metadaten in unternehmensweiten Business-Prozessen wie Concurrent Engineering, Modulverwaltung, Konfigurationsmanagement, Bauteilverwaltung sowie Änderungs- und Freigabemanagement genutzt werden.

Read now
  • Blog
Dezember 13, 2021
LPDDR4 Design für PCB Entwickler

In der Elektronikindustrie herrscht heute ein anhaltender Trend zum Low-Power-Design und das wird sich wohl auch in näherer Zukunft kaum ändern. Angetrieben wird er unter anderem von den Anforderungen und Leistung und Speicherdichte von mobilen Geräten, bei denen eine Reduzierung des Stromverbrauchs entscheidend ist, um die Akkulaufzeit zu verlängern, ohne dabei die Bandbreite zu beeinträchtigen. Dieser Guide hilft Ihnen, die Herausforderungen von LPDDR4-Design zu lösen.

Read now