The High-Speed Design Challenge of Maintaining PCB Signal Integrity in a 3D Design Environment


Ultra-high signal speeds demand detailed consideration of the third dimension in PCB design, including via structures and layer stacks. Today I’m going to focus on the challenge. In my two subsequent posts I’ll be reviewing what PCB designers can do to meet that challenge.

Mainstream high-speed signals

Not long ago, third dimension issues didn’t figure too much in high-speed design calculations; but signals have become so fast that those vias don’t affect them the same way they did before. Those really fast signals have become part of super-common bus standards that are used in all kinds of products.

It’s a PCB design issue that we can’t avoid. Luckily, there are ways not just to address this issue, but to optimize performance at the same time.

Effects of vias on signals

Layer changes can slow signals down or distort them. Their effects depend (amongst other things) on:

  • Via geometry
  • Where vias are placed within the routing
  • Shape and speed of signals
  • Other nearby items that couple to vias

So vias don’t always distort signals in the same way and neither does the same via always introduce the same delay.

New via technology threshold

A key breakpoint is reached when a signal is so fast that the routing that carries it starts to behave as a network of transmission lines. When this happens, engineers must take positive steps to make sure signals arrive in good shape.

For mainstream digital designs, that breakpoint was reached decades ago for routing in the XY plane. That’s why we’ve long had controlled routing topology and reference ground and power planes. But now we’ve reached the point where we need to do the same in the third dimension. Standards-based bussing means that this can happen even on a board that doesn’t run particularly quickly.

If you’d like to see me describe all that with the help of a sheet of hardboard, you can watch this short movie.

See you again in Part 2 where I look more at how to use vias to maintain signal integrity under these high-speed 3D conditions.

Jane Berrie
Jane Berrie
Electronic Design Technology Partner
Jane Berrie is an EDA product innovator and technical marketing content creator, focusing on high-speed design and signal integrity. She is a published author of technical articles and a past session chair at the annual Design Automation Conference (DAC). Jane enjoys managing themed charity events, disco and going out with friends.
  • Blog
September 20, 2021
What PDN Target Impedance Means for PCB Designers

PDN impedance is becoming more and more of a headache for PCB designers as IC vendors are defining increasingly tight so-called ‘target impedance limits’. This article explains what PDN impedance means for PCB designers and what to pay particular attention to.

Read now
  • Webinare
August 19, 2021
Design for Test: Digitale Kontinuität von der Entwicklung bis zur Produktion mit TestWay

Traditionell werden Fertigungs- und Testbedingungen erst am Ende der Layout-Phase, vor der Übertragung der CAD-Daten in die Produktion, berücksichtigt. Mit TestWay können Anwender des CR-8000 von Zuken ihr Design in jeder Phase des Arbeitsablaufs vom Entwurf bis zur Auslieferung analysieren.

Jetzt ansehen
  • Webinare
August 18, 2021
Managed Services: Technische IT-Umgebungen in der Cloud betreiben

Immer mehr Unternehmen interessieren sich für die Cloud als Alternative für den Betrieb ihrer technischen IT. Wir zeigen Ihnen die wesentlichen Grundlagen und Erfahrungen, die Ihnen helfen sollen, den gewünschten Mehrwert zu definieren und eine nachhaltige Migration zu planen.

Jetzt ansehen
  • Webinare
August 18, 2021
IC-Power-Modul Design mit Design Force

Der typische Entwurfsablauf für ein Power-Modul erfolgt in MCAD, wo nur eine Strukturanalyse möglich ist. Der Wechsel zu einem neuen Entwurfsablauf mit CR-8000 Design Force ermöglicht auch eine elektrische Analyse. In diesem Webinar lernen Sie die Funktionen und Vorteile dieses neuen Verfahrens kennen.

Jetzt ansehen