The risk of crosstalk, ‘crosstalk’ stems from the days of telephone exchanges

The risks of crosstalk

“You’re connected now caller”
Menu

Did you know the expression ‘crosstalk’ stems from the days of telephone exchanges, as staffed by operators connecting parties who could sometimes and unintentionally hear someone else’s conversation? The talk was, literally, crossing over from one line to another.

Despite having worked in the electronics industry for more than 30 years, I must confess I did not know the origin of the term. Not until a few weeks ago, anyway, when I sat in on a great webinar entitled ‘Practical Signal Integrity for improved EMI Control in PCB Design’. The webinar was written and presented by Ralf Bruening, with whom I’ve had the pleasure to work on a few occasions, and what Ralf doesn’t know about signal integrity and EMC isn’t worth knowing.

Watch Webinar

Crosstalk on a PCB

In PCB design, crosstalk describes the unintentional electromagnetic coupling between traces on a PCB. There is not only a risk of crosstalk between two traces that are adjacent to each other on the same layer but also between traces that run parallel to each other vertically between two layers. This effect occurs even more frequently because two signal layers are separated only by a relatively thin layer of the core material. This spacing is often even smaller than the spacing between two traces on the same layer.

When I studied electronics at college in the mid-1980s, my lecturers just cut to the physics of crosstalk (cross-coupling, energy transfer, etc.) and teaching us how to design out the risk of crosstalk. I’m happy Ralf did mention the origin of the term though. For my own understanding and because it set the tone for what was to follow on the webinar.

In the telephone exchange example, an unwanted EMI effect was impairing the quality and effectiveness of the leading technology of the day.

Cut to today and, guess what? The risks of crosstalk are present. We’ve simply gone from switchboard to circuit board, geometries have shrunken considerably and we have high-speed digital with which to contend. Whether it’s an IoT-enabled consumer product we’re working on, or a power control module for an electric vehicle or a set-top box with a 4K output, unless we design out all the unwanted behavior of the underlying electronic circuits, efficiency and effectiveness will be compromised.

In this respect, we’re talking ‘efficiency’ in terms of parameters such as battery life (e.g., if it’s not a mains-powered product) and ‘effectiveness’ in terms of not being able to deliver the intended performance.

Importance of Impedance Matching

Though happy to skip the history lesson, my college lecturer was keen to stress the importance of impedance matching. It becomes increasingly important – as clock speeds ramp up – to reduce the risk of crosstalk.

Reduse risk of crosstalk

The overshoots on the rising and falling edges of the above trace (left-hand side) are unwanted behavior on a signal – i.e., a physical copper track on our PCB – and they can easily induce spikes in adjacent tracks. And let’s not forget, the shrinking form factors of most products (and by extension their circuit boards) mean little freedom when it comes to the placement and separation of components and tracks. Also, cost restrictions may prohibit the use of extra components to filter out noise or additional copper for shielding tracks.

What’s the answer? Well, as my college lecturer was keen to stress all those years ago, make sure you ‘design out’ the unwanted effects. Adhering to established design rules is a good start. However, you will need to make compromises when it comes to achieving all project goals; because cost and time-to-market are in the mix too.

In this respect, the tips Ralf provides on his webinar provide invaluable advice – without trying to make you an EMC expert – and if you missed it, don’t worry, it’s still available on-demand here. I highly recommend it.

Read other EMC articles by Ralf Bruening:

Richard Warrilow
Richard Warrilow
Richard Warrilow is a Technical Author with Declaration Limited. He is a qualified electronics engineer and worked for GEC Marconi Avionics (now BAE SYSTEMS) during the 1990s on two high-profile fly-by-wire programmes before moving into technical journalism and, latterly, establishing Declaration in 2001. Richard still works closely with companies active in the aerospace sector and has written articles on subject matters ranging from the certification of programmable electronic components intended for use in aerospace applications through to systems for the in-flight refuelling of military aircraft.
Reuse of Schematic and Layout Modules in PCB design
  • Webinar
April 12, 2024
Dealing with Component Obsolescence in PCB Design

This webinar will demonstrate how Zuken's CR-8000 Enterprise PCB Design System automates updates and redesigns in response to component obsolescence. Learn how to identify affected modules, update designs with a schematic module library, and intelligently assist layout modifications.

REGISTER
Live Webinar on June 11, 11 am CEST
Abstract visualization of a brain-shaped printed circuit board, depicting the concept of artificial intelligence in PCB design
  • Blog
January 11, 2024
Harnessing the power of artificial intelligence for PCB design

With the release of ChatGPT, artificial intelligence, has become a topic that has stirred many emotions. On our blog we're exploring whether AI could one day be used to support Zuken's core business of solving complex design challenges such as PCB layout and routing.

Read now
Detailed view of a DDR4 memory module, highlighting intricate circuit patterns and metallic connectors indicative of high-speed data processing capabilities.
  • Blog
December 04, 2023
DDR4 Design Masterclass: Advanced Techniques for Optimal Memory System Design

Although memory technology continues to evolve, in the current technology landscape, DDR4 is often a critical hurdle in the design process of an electronic application because of the large number of rules and constraints which have to be obeyed for the implementation of high-performance memory subsystems. Learn what to consider.

Read now
AI Based PCB Place and Route
  • Webinar
December 04, 2023
AI-Based PCB Place and Route

CR-8000 Webinar: Zuken recently announced the upcoming release of the industry’s first AI-based PCB place and route product - Autonomous Intelligent Place and Route (AIPR) - This webinar will examine how companies and users will benefit.

Watch Now