Low voltage or over current, which are you?

How to avoid voltage errors and current issues with automated electrical schematic simulation

Changing standard components in an electrical system is a common task but it entails a number of time-consuming checks that engineers must carry out to avoid trouble. For example, replacing a windscreen wiper motor may seem like a simple task, but what if the new motor is more powerful?

It could be a simple case of uprating the fuse size from a 15-amp fuse to a 20-amp fuse. But will the current wiring size be ok? Maybe the 1.5mmSQ cable is fine, but how long is the wire? Should the wire be upgraded to 2.0mmSQ cable or even 2.5mmSQ?

  1.  If the fuse is too small, then a fuse that blows daily will be a constant issue, which will undoubtedly lead to unhappy operators.
  2. If the wire is too small, it could cause a voltage drop issue and result in the motor not working correctly. Even worse, the wire is too small and could cause a thermal event – a recipe for disaster!

To ensure these issues don’t occur, engineers have to do lots of time-consuming calculations, checks, and re-checks – and if they’re not done correctly, they can easily result in errors that are costly to fix in production or may even lead to malfunction in the field.

E3.series solves these potential issues with its intelligent component-based parts library, optional Component Cloud for E3.series, and automated circuit simulation.
Components in the database can be created to contain electrical functional details for example:

  • maximum voltage
  • minimum voltage
  • nominal voltage
  • power, and resistance


Components in the E3.series database contain electrical details like the maximum voltage, minimum voltage, nominal voltage, power, and resistance.


When these components are added to a design, E3.eCheck can simulate the system voltage and display component status information.

When a component is added to a design, the system voltage can be calculated and displayed with E3.echeck


Colors and movements of components can also be simulated to replicate component states to allow quick and easy viewing of the system state. Lamps can change color to indicate on / off, switches can change position, etc.

Multiple states can be created within the component to simulate different functions. For example, a switch can have three states, off, position 1, and position 2. This gives you the ability to change the position of a switch and easily test different functionalities.

Multiple states can be created within a component to simulate different functions.


E3.echeck can also use wire lengths to calculate the voltage drop. Design engineers can physically modify the length to replicate the new requirement or use E3.RoutingBridge to import the wire lengths directly from the MCAD design.

Wire lengths can be imported directly from MCAD designs using E3.3DRoutingBridge

This method means that devices can be placed or moved in the MCAD world, wire routing can be updated, and then the new information can be seamlessly imported back into E3.schematic and verified using E3.eCheck, to simulate the new system to check the effect of the changes.

If wire lengths change as a result of a change in the mechanical design the voltage drop can be calculated in E3.eCheck.

Using E3.eCheck in conjunction with E3.schematics’ intelligent component-based parts library engineers across the globe can create or replace components in a design, and verify that items such as terminals and seals are available and that the selected wires, fuses, etc. are correct. The simulation and design rule checks alert engineers to potential problems long before the design is ready for manufacturing.

Carl Worthington
Carl Worthington
Technical Marketing Content Manager
Carl Worthington is Technical Marketing Content Manager for Zuken UK and has held positions at companies that include, Mecalac, Terex, Dennis Eagle and Iveco. Carl lives in Warwickshire and enjoys hobbies such as building a kit car from the ground up, cooking and fast cars.
  • Blog
March 21, 2023
How to avoid errors with uncontrolled electrical design changes

System design engineers must balance the demands of time and cost efficiency as well as accuracy under tight deadlines. When projects require collaboration between distributed people and teams, communication issues can make collaboration a challenging issue.

Read now
  • Blog
March 07, 2023
Unlocking the Key to Seamless Data Migration of Electrical and Electronic Legacy Data

Electrical and electronic engineering and design data represent a valuable investment that should be used and reused as often as possible, for reasons of cost and productivity. For this purpose, Zuken offers a comprehensive portfolio of data migration tools and services, which have just been used to successfully convert 18,000 projects from Windmüller & Hölscher's legacy data to the latest Zuken technology in a 24-hour batch process with up to 10 processes running in parallel.

Read now
  • Case Study
February 10, 2023
Windmöller & Hölscher

Data conversion as a foundation for a future-oriented development process in electrical and pneumatic control technology. Zuken Migration Services converts 18,000 data records for Windmöller & Hölscher, the world market leader in machines and systems for manufacturing and processing flexible packaging.

Read now
Migrating 30 years of legacy data to Zuken E3.series via Zuken’s data migration services
  • Blog
January 23, 2023
Avoiding the pitfalls of mundane tasks

System design engineers are under constant pressure to reduce time, and costs and operate in a right-first-time environment. The most common tasks that an engineer performs, can sometimes be the most time-consuming, cumbersome, and error-prone processes. Learn how to avoid errors of repetitive tasks in electrical system design by using an intelligent component database.

Read now