Low voltage or over current, which are you?

How to avoid voltage errors and current issues with automated electrical schematic simulation
Menu

Changing standard components in an electrical system is a common task but it entails a number of time-consuming checks that engineers must carry out to avoid trouble. For example, replacing a windscreen wiper motor may seem like a simple task, but what if the new motor is more powerful?

It could be a simple case of uprating the fuse size from a 15-amp fuse to a 20-amp fuse. But will the current wiring size be ok? Maybe the 1.5mmSQ cable is fine, but how long is the wire? Should the wire be upgraded to 2.0mmSQ cable or even 2.5mmSQ?

  1.  If the fuse is too small, then a fuse that blows daily will be a constant issue, which will undoubtedly lead to unhappy operators.
  2. If the wire is too small, it could cause a voltage drop issue and result in the motor not working correctly. Even worse, the wire is too small and could cause a thermal event – a recipe for disaster!

To ensure these issues don’t occur, engineers have to do lots of time-consuming calculations, checks, and re-checks – and if they’re not done correctly, they can easily result in errors that are costly to fix in production or may even lead to malfunction in the field.

E3.series solves these potential issues with its intelligent component-based parts library, optional Component Cloud for E3.series, and automated circuit simulation.
Components in the database can be created to contain electrical functional details for example:

  • maximum voltage
  • minimum voltage
  • nominal voltage
  • power, and resistance

 

device-properties-lamp-voltage
Components in the E3.series database contain electrical details like the maximum voltage, minimum voltage, nominal voltage, power, and resistance.

 

When these components are added to a design, E3.eCheck can simulate the system voltage and display component status information.

components-multiple-states
When a component is added to a design, the system voltage can be calculated and displayed with E3.echeck

 

Colors and movements of components can also be simulated to replicate component states to allow quick and easy viewing of the system state. Lamps can change color to indicate on / off, switches can change position, etc.

Multiple states can be created within the component to simulate different functions. For example, a switch can have three states, off, position 1, and position 2. This gives you the ability to change the position of a switch and easily test different functionalities.

Blog-2-4A-300x200
Multiple states can be created within a component to simulate different functions.

 

E3.echeck can also use wire lengths to calculate the voltage drop. Design engineers can physically modify the length to replicate the new requirement or use E3.RoutingBridge to import the wire lengths directly from the MCAD design.

mcad-data-import
Wire lengths can be imported directly from MCAD designs using E3.3DRoutingBridge

This method means that devices can be placed or moved in the MCAD world, wire routing can be updated, and then the new information can be seamlessly imported back into E3.schematic and verified using E3.eCheck, to simulate the new system to check the effect of the changes.

routing-bridge-import-wire-length
If wire lengths change as a result of a change in the mechanical design the voltage drop can be calculated in E3.eCheck.

Using E3.eCheck in conjunction with E3.schematics’ intelligent component-based parts library engineers across the globe can create or replace components in a design, and verify that items such as terminals and seals are available and that the selected wires, fuses, etc. are correct. The simulation and design rule checks alert engineers to potential problems long before the design is ready for manufacturing.

Carl Worthington
Carl Worthington
Carl Worthington is Technical Marketing Content Manager for Zuken UK and has held positions at companies that include, Mecalac, Terex, Dennis Eagle and Iveco. Carl lives in Warwickshire and enjoys hobbies such as building a kit car from the ground up, cooking and fast cars.
A diagram showcasing how the use of PLM can improve functionality, as was the case with Haulotte integrating Zuken's E3.series
  • Blog
February 20, 2024
Delivering on the Promise of Product Lifecycle Management (PLM)

Product Lifecycle Management (PLM) stands as a cornerstone in enhancing product development and operational efficiency, offering a comprehensive approach to navigating the complexities of modern manufacturing. Discover the strategies for effective PLM integration on our blog.

Read now
Haulotte's integration of E3.series with ARAS PLM, highlighting improved engineering processes, efficiency, error reduction, and PLM integration, supporting Haulotte's innovation and success in aerial work platforms.
  • Case Study
January 16, 2024
Haulotte

Haulotte's choice of Zuken's E3.series solution has enabled the optimization of work methodology and a more serene and effective projection towards future developments

Read now
The integration of the E3.Series and DS-E3 solutions with the ARAS PLM fully meets the needs expressed by the engineering department at Haulotte.
Hydrogen Fuel Cell Vehicles: Are they a Sustainable Automotive Innovation?
  • Blog
January 15, 2024
Hydrogen Fuel Cell Vehicles: A Sustainable Automotive Innovation

The fuel cell is indeed a clean and sustainable energy technology, primarily due to its ability to generate electricity with minimal emissions of greenhouse gases and pollutants. However, its wider diffusion faces several challenges. Learn more on our blog.

Read now
MLC Technologies' sailboat, powered by Zuken's E3.series design tools, showcases advanced maritime technology in action for the blog on innovative off-grid solutions.
  • Blog
November 20, 2023
MLC Technologies Introduces E3.series for the Design of Maritime and Off-Grid Technologies

MLC Technologies Ltd, a fast-growing electrical engineering business specializing in delivering complex mission critical electrical and electronic solutions for data acquisition, mission control, power distribution, and navigation applications in maritime and off grid environments, has introduced Zuken’s E3.series ECAD software for the design and validation of their electronic and electrical systems and wiring harness designs.

Read now