The Building Blocks of a Digital Twin Strategy for Automotive Wiring Systems

The Building Blocks of a Digital Twin Strategy for Automotive Wiring Systems

Menu

Because of its influence on weight and cost, accurately digitizing the wiring system is a priority when implementing a digital twin strategy in the automotive and transportation sectors. It’s also one of the most challenging aspects of this task.

In my last blog, I focused on the importance of a comprehensive and standardized data model as my first key requirement to meet this challenge.

Today I want to concentrate on the various aspects of the wiring system, and consider how different users expect to see different presentations and views of the related data.

Block 1: Connectivity and topology

Let´s see how a wiring system can be described digitally: The core of a KBL or VEC file is the product description of the wiring harness itself. This description can be broken down into connectivity and topology parts.Connectivity and topology

Connectivity describes the electrical from-to relationships – or which wires connect with which components, including all technical details. On the other hand, the topology defines the geometrical details – where the wires run in the vehicle, including electromechanical parts for wire protection like tapes, tubes or grommets.

In a KBL or VEC this information is modeled in a standardized XML file. However this XML can’t be read by a user directly, so a specialized viewer is required.

Because of its rich functionality, Zuken’s E3.HarnessAnalyzer has become the de facto-standard for this task. The connectivity, as well the topology information with all its details and relations, are shown in a data grid. In addition, this information is represented in a graphical format to satisfy the different needs of each user:

  • For those who are mainly interested in connectivity, the tool can render a partial schematic out of the digital connectivity model.

Connectivity-View

  • If the interest lies more with the geometrical part, then a 3D rendering of the KBL data may be the perfect choice.

3D Topology-View

  • But sometimes a 2D representation of the KBL data may be combined with the original harness drawing as a SVG, and can be the better choice for answering specific questions.

Block 2: Metadata, complexity and history

So, the digital data model KBL / VEC can describe the harness product completely, and a powerful viewer can make this design information easily understandable to different users to support their specific needs.

In addition to the pure design data, a KBL / VEC file can also carry a comprehensive set of metadata. The most important of these are related to complexity management, as wiring harness products are heavily variant related – often even in unique, customer-specific products. Depending on the method used, a KBL / VEC file can model a composite harness structure as well as a modular one (KSK).  And this model description has to be distributed to the users via the powerful functionality of the viewer tool – such as updating the graphical views based on the vehicle-specific selection of KSK modules.

Metadata, complexity and history
The same cockpit harness is dynamically visualized in different configurations

Of course, this filtering operation must be applied to all data grids and viewpoints.

In addition, KSK can transport history information – especially for the modules. Having a powerful viewer tool, the user can easily find out details about the current product version – such as who released it and when. And they can retrieve the history of a specific harness module.

Block 3: Release and version data, PLM model

The communication of metadata in KBL is outperformed by far when using the VEC format. VEC can contain the release and version data on every single object, so the user can acquire detailed information about any connector or terminal. As a result, VEC can also claim to cover a comprehensive PLM model for wiring system components.

Such a powerful data format requires not only a viewer to create benefits for the stakeholders in the process, but also powerful authoring tools and a dedicated data management solution. With Zuken’s popular E3.series electrical design tool, in combination with its dedicated data management tool, DS-E3, Zuken is well prepared to provide the full suite of tools for the whole process chain of digital wiring system development.

Also see:

Reinhold Blank
Reinhold Blank
Dipl.-Ing. (FH) Reinhold Blank, born 1960, studied mechatronics at the Technische Hochschule Nuremberg. Since 1990 he is working in the domain of E-CAD, first in sales, then as support manager and head of product management at well-known German software houses. In 1997 he changed the allegiance and took the worldwide responsibility as CAD-Manage for LEONI – one of the leading harness suppliers. Later he changed to Intedis – a JV company of the LEONI and HELLA and as member of the executive management he supported more than 100 projects for OEM´s worldwide in the area of E/E Architecture development. Along with those project he had established also a software development team at Intedis developing the first tool for E/E Architecture in 2003. In the recent years he gained also international experience while he was serving as General Manager of Intedis Shanghai. Since May 2014 Reinhold Blank took the responsibility Business Director Automotive at ZUKEN´s E3 GmbH in Germany and is responsible for Zuken's solutions of today and tomorrow for the E/E systems in vehicles.
A diagram showcasing how the use of PLM can improve functionality, as was the case with Haulotte integrating Zuken's E3.series
  • Blog
February 20, 2024
Delivering on the Promise of Product Lifecycle Management (PLM)

Product Lifecycle Management (PLM) stands as a cornerstone in enhancing product development and operational efficiency, offering a comprehensive approach to navigating the complexities of modern manufacturing. Discover the strategies for effective PLM integration on our blog.

Read now
Haulotte's integration of E3.series with ARAS PLM, highlighting improved engineering processes, efficiency, error reduction, and PLM integration, supporting Haulotte's innovation and success in aerial work platforms.
  • Case Study
January 16, 2024
Haulotte

Haulotte's choice of Zuken's E3.series solution has enabled the optimization of work methodology and a more serene and effective projection towards future developments

Read now
The integration of the E3.Series and DS-E3 solutions with the ARAS PLM fully meets the needs expressed by the engineering department at Haulotte.
Hydrogen Fuel Cell Vehicles: Are they a Sustainable Automotive Innovation?
  • Blog
January 15, 2024
Hydrogen Fuel Cell Vehicles: A Sustainable Automotive Innovation

The fuel cell is indeed a clean and sustainable energy technology, primarily due to its ability to generate electricity with minimal emissions of greenhouse gases and pollutants. However, its wider diffusion faces several challenges. Learn more on our blog.

Read now
MLC Technologies' sailboat, powered by Zuken's E3.series design tools, showcases advanced maritime technology in action for the blog on innovative off-grid solutions.
  • Blog
November 20, 2023
MLC Technologies Introduces E3.series for the Design of Maritime and Off-Grid Technologies

MLC Technologies Ltd, a fast-growing electrical engineering business specializing in delivering complex mission critical electrical and electronic solutions for data acquisition, mission control, power distribution, and navigation applications in maritime and off grid environments, has introduced Zuken’s E3.series ECAD software for the design and validation of their electronic and electrical systems and wiring harness designs.

Read now