Flex Circuits Stretch the Limits of Technology

Flex Circuits Stretch the Limits of Technology

Menu

A customer recently asked me if CR-8000 Design Force could support stretchable flex designs. At first, I found the question odd, until they shared their intent: wearable electronics. The idea of wearable electronic products like head and wrist bands sparked an interesting conversation and piqued my interest.

I gave myself an action item to do a little research on the design requirements and the manufacturability of the concept. Apparently, we are approaching a decade since the first experiments with stretchable materials began at M.I.T., The University of Michigan and other esteemed institutions. We’ve come a long way in the last decade.

Currently there are PCB manufacturers supporting “stretch-rigid” and “stretch-flex” technologies. While at the PCB West 2018 conference in Santa Clara, CA, I had the chance to visit with one. Greg Vouga, who is the director of sales at Würth Electronics was kind enough to share some information with me and provide some samples of finished circuits.

You may wonder how these technologies might be used. You may initially think about wearable electronics like watches and fitness trackers. But mainly, this technology is targeted at medical applications. Some time ago I participated in a sleep apnea study and it involved being wired up with electrical sensors around my head and face. With the newest stretch-flex technology the 30-minute prep time to connect all the various sensors and wires could be eliminated by using a fitted cap that the patient can easily slip on and off. At the same time, the wearable technology makes it easier for the patient to be mobile during the study. That’s only one example, and the possibilities are growing.

Flex Circuits Stretch the Limits of Technology
Würth Electronics demonstrates proof of concept with their stretch-flex circuits.

The design process for stretchable circuitry requires similar design considerations for manufacture (DFM) checks as with typical rigid-flex designs such as arcs, curved traces, reinforced pads, etc. The manufacturing difference is in the materials where a polyurethane or silicone film is used to encase the stretchable/retractable wire patterns and components as opposed to polyimide Kapton non-stretchable materials. The stretch in the finished circuit is obtained by routing the copper traces using repetitive horseshoe-shaped meanders, as shown in the image below.

 

The mechanical limitation of the percentage of stretch over {x} amount of cycles or stretches is still a mystery that engineers will solve over time. For example, 10% stretch could be achieved over 100,000 cycles or 70% of stretch may occur over 100 cycles, just like a rubber band.

Copper weights of 0.5 oz and wire widths of 0.1mm are typical though the wires in the image above were smaller. Some cases resulted in a completed circuit only 0.015mm. The spacing in between the wires in the stretch region is sealed to prevent contact during manipulation of the article.

Getting back to the original question, “Can CR-8000 Design Force support stretchable flex designs?” The answer is of course, yes. However, the layout of the design is only part of the challenge; defining the DFM rules and checks is the other part. Zuken’s DFM/ADM (advanced design for manufacturing) rules makes it possible to check for the basics of rigid and flex design ensuring design accuracy throughout the process. As these new technologies continue to evolve with even more applications, DFM rules and checks will also evolve to support them.

AI-inPCB-Design-header_v3-510x310
  • Blog
May 23, 2025
AI in PCB Design: From Misconception to Meaningful Assistance

AI in PCB design is increasingly seen as a game-changer, with some predicting it could soon replace entire layout teams—but this view risks overlooking both the current limits of AI and the critical expertise engineering demands. At DesignCon 2025, experts from emphasized that AI's real value lies in complementing human judgment, not replacing it. Read more on our blog.

Read now
AdobeStock_951705907-510x310
  • Blog
February 13, 2025
The Future of Augmented Reality

Our new post explores the potential of augmented reality (AR) to transform everyday experiences in shopping, education, and navigation. It highlights how enhanced AR devices will offer immersive, interactive environments that blend the virtual and physical worlds.

Read now
wp-header-1920x844-pcb-2025-2-510x310
  • Blog
January 30, 2025
The Top PCB Design Trends to Watch in 2025

The field of PCB design continues to evolve as advancements in technology and shifting market demands push the boundaries of what’s possible. By 2025, several key trends are set to shape the industry. Find out more on our blog.

Read now
wp-header-1920x844-supply-chain-1-510x310
  • Blog
January 23, 2025
Supply Chain Risk Management in PCB Design with SiliconExpert and CR-8000 Integration

Supply chain risk management is critical for electronics design. By integrating SiliconExpert with CR-8000, engineers gain tools to streamline component selection, manage obsolescence, and ensure design continuity. This integration supports efficient workflows, reduces costs, and mitigates supply chain disruptions.

Read now