Digital Engineering

Model-Based Product Development

MBSE for Electrical and Electronic Design

As companies transform and adopt Digital Engineering practices to improve product development processes, Zuken is also transforming.  With the acquisition of Vitech Corporation, an industry leader in  Model-Based System Engineering technology, Zuken can now combine detailed design with model-based design.

Digital Engineering Fundamentals

Model-Based Design

Digital Engineering begins with the construction of a product model by the Systems Engineering team. The model is comprised of architecture, requirements, and behaviors creating a design envelope for the electrical and electronic components of the product.

3D Detailed Design

A major obstacle to model-based design is making the model relevant throughout the product lifecycle. The electrical and electronic design tools need to import the model architecture and expose the requirements to the detailed design team.

Digital Thread

Maintaining a robust digital engineering design process requires a digital thread to capture digital conversations for traceability. The digital conversation can span internal and external organizations and involve procurement, vendors, design, manufacturing and field service.

Benefits of Digital Engineering

Increased Confidence

Design data and decisions are traceable providing history and documented variance to plan. Minimize risk

Better Understanding

The model-based design offers multi-discipline requirements, behavior, and architecture defined in a single source of truth

Informed Decisions

Through communication tools, conversations can be associated with technical data packages for signoff and traceability.

Better Communications

A key function of the Digital Thread is to enhance communication through online conversations spanning internal and external organizations.


Model Relevance Through The Product Life Cycle

The model must remain relevant throughout the product life cycle. This is one of today’s biggest challenges. The model typically becomes a Systems Engineering artifact and has limited use through the development and manufacturing process.  A Digital Engineering process keeps the model relevant through the product life cycle providing ROI benefit.


zuken-model-relevance-digital-engineering


MBSE transition to detailed design


Creating The Design Envelope

The system-level model is decomposed into electrical and electronic subsystems for implementation.  Each subsystem is composed of sensors, ECU’s, interconnects, etc.  Each of these design elements must be defined in terms of a design envelope which provides the design teams with the implementation parameters.  Verification requirements are made against the design envelope to assure that the implementation fulfills the intent of the model.


Design Verification Gates

The model-based design has verification gates to ensure that the implementation reflects the model definition.  The verification gates are comprised of design reviews, trade-offs, changes and ultimately approval.  The digital conversations behind those activities and approvals become part of the digital thread. Verification gates are placed at critical design phases that include architecture, design, first article, and subsystem.  Each gate requires a status update in the model.


zuken-design-verification-gates-digital-engineering


Anark digital thread communication


Digital Thread Communication

Digital Engineering requires a digital communication mechanism to replace paper trails and documentation.  A robust digital thread implementation provides a browser-based communication built on activities, conversations, groups, and data.  All digital activity that can span the product life cycle is captured and can provide traceability.

Digital Engineering Process

The process is based on a model built upon relationships. The model replaces a document-based design. The model is typically created by the Systems Engineering team who converts system purpose into structure, behavior, and requirements.  The model is considered the single source of truth.

Learn more

The model must remain relevant throughout the product life cycle. This is one of today’s biggest challenges. The model typically becomes a Systems Engineering artifact and has limited use through the development and manufacturing process.  A Digital Engineering process keeps the model relevant through the product life cycle and operates as a single source of truth.

For the purpose of realizing the model in the electrical and electronic domains, the model must be decomposed into E/E subsystems. These subsystems are further decomposed into functional elements as Electronic Control Units (ECU), sensors, busses, and connections.

Realizing the model in the electrical and electronic domain requires a logical structure of design elements with the associated behavior and requirements. Model creation can be done with Vitech’s GENESYS product with the appropriate guidelines for model content.  For instance, the model does not typically contain specific component identification such as part numbers.

Learn more

When the design transitions from System Engineering to the implementation team, a design envelope must be clearly defined. The design team then knows what are the acceptable parameters in terms of cost, weight, size, power, etc.

Architecture verification is a design step prior to a detailed design where a partial detailed design is used to verify model requirements that can be met at high confidence. If a requirement can not be met at this phase, Systems Engineering must alter the model in the context of the entire system to enable a realizable implementation of the mode.

Once the design is verified at the architecture level meaning the verification requirements are met with high confidence, the design can move to detailed design. At this point domain-specific electronic and electrical design practices and tools are used to design a manufacturable product.  Learn more about transitioning to electrical design.

Learn more

The model must remain relevant through the product development process. This is accomplished through verification gates which are comprised of a set of verification requirements. The design can not proceed to the next development phase until the gate requirements are satisfied.  This ensures the product is consistent with the model.

As the design moves through each verification gate, the model must be updated to reflect the verification requirement status. This allows Systems Engineering to monitor the design progress in terms of meeting verification requirements. As the design progresses through the implementation process, Systems Engineering has a window into its model consistency.

Throughout the Digital Engineering process, discussions that lead to decisions must be recorded and retained for traceability. The Digital Thread provides the mechanism to hold those critical digital conversations.

Learn more

Related Resources

  • Case Study
Ottobre 04, 2021
INORCOAT

The start-up company INORCOAT relies on Zuken’s E3.series for the development of environmentally friendly nanotechnology coating systems. INORCOAT’s first system was recently put into operation at the Portuguese National Bank for the coating of dies for euro coins.

Read now
  • Comunicato Stampa
Settembre 29, 2021
Zuken Accelerates its Drive to Expand the Model-Based Systems Engineering Business

Zuken accelerates MBSE business by forming new R&D Unit to bridge MBSE into a digital engineering-based design process for electrical and electronic design

Read now
  • Comunicato Stampa
Settembre 15, 2021
Zuken e Vitech annunciano una serie di conferenze congiunte

Zuken USA and Vitech to host co-located industry events in 2022 in San Antonio, TX. Zuken Innovation World and Vitech Integrate will have a common focus on Digital Engineering.

Read now
  • Webinar
Settembre 07, 2021
CR-8000 Mechanical Collaboration

In ambito mechatronico non è più sufficiente importare i vincoli di Progetto con Dxf, Idf, IDX che sono file intermedi. Con CR-8000 Design Force è possible la creazione della board e dei suoi vincoli dal formato native del disegno meccanico.

Guarda ora
  • Comunicato Stampa
Agosto 03, 2021
E3.series Release 2021 rende la progettazione di quadri elettrici e cablaggi più veloce, facile e robusta

E3.series 2021 di Zuken offre miglioramenti per la gestione di connettori, la progettazione di quadri elettrici in 3D e lo scambio di dati ECAD/MCAD.

Read now
  • Comunicato Stampa
Luglio 07, 2021
Zuken presenta CR-8000 2021 con funzionalità avanzate di analisi e riutilizzo di progetti

CR-8000 di Zuken ottimizza la progettazione PCB a livello di sistema con miglioramenti nella simulazione analogica, nell'analisi SI e nel layout e routing intelligente

Read now

Hai domande? Contattaci

Per ulteriori informazioni su come Zuken può supportare il tuo progetto, contatta Zuken oggi stesso
Contattaci!