Digital Engineering

Model-Based Product Development

MBSE for Electrical and Electronic Design

As companies transform and adopt Digital Engineering practices to improve product development processes, Zuken is also transforming.  With the acquisition of Vitech Corporation, an industry leader in  Model-Based System Engineering technology, Zuken can now combine detailed design with model-based design.

Digital Engineering Fundamentals

Model-Based Design

Digital Engineering begins with the construction of a product model by the Systems Engineering team. The model is comprised of architecture, requirements, and behaviors creating a design envelope for the electrical and electronic components of the product.

3D Detailed Design

A major obstacle to model-based design is making the model relevant throughout the product lifecycle. The electrical and electronic design tools need to import the model architecture and expose the requirements to the detailed design team.

Digital Thread

Maintaining a robust digital engineering design process requires a digital thread to capture digital conversations for traceability. The digital conversation can span internal and external organizations and involve procurement, vendors, design, manufacturing and field service.

Benefits of Digital Engineering

Increased Confidence

Design data and decisions are traceable providing history and documented variance to plan. Minimize risk

Better Understanding

The model-based design offers multi-discipline requirements, behavior, and architecture defined in a single source of truth

Informed Decisions

Through communication tools, conversations can be associated with technical data packages for signoff and traceability.

Better Communications

A key function of the Digital Thread is to enhance communication through online conversations spanning internal and external organizations.

Model Relevance Through The Product Life Cycle

The model must remain relevant throughout the product life cycle. This is one of today’s biggest challenges. The model typically becomes a Systems Engineering artifact and has limited use through the development and manufacturing process.  A Digital Engineering process keeps the model relevant through the product life cycle providing ROI benefit.

MBSE transition to detailed design

Creating The Design Envelope

The system-level model is decomposed into electrical and electronic subsystems for implementation.  Each subsystem is composed of sensors, ECU’s, interconnects, etc.  Each of these design elements must be defined in terms of a design envelope which provides the design teams with the implementation parameters.  Verification requirements are made against the design envelope to assure that the implementation fulfills the intent of the model.

Design Verification Gates

The model-based design has verification gates to ensure that the implementation reflects the model definition.  The verification gates are comprised of design reviews, trade-offs, changes and ultimately approval.  The digital conversations behind those activities and approvals become part of the digital thread. Verification gates are placed at critical design phases that include architecture, design, first article, and subsystem.  Each gate requires a status update in the model.

Anark digital thread communication

Digital Thread Communication

Digital Engineering requires a digital communication mechanism to replace paper trails and documentation.  A robust digital thread implementation provides a browser-based communication built on activities, conversations, groups, and data.  All digital activity that can span the product life cycle is captured and can provide traceability.

Digital Engineering Process

The process is based on a model built upon relationships. The model replaces a document-based design. The model is typically created by the Systems Engineering team who converts system purpose into structure, behavior, and requirements.  The model is considered the single source of truth.

Learn more

The model must remain relevant throughout the product life cycle. This is one of today’s biggest challenges. The model typically becomes a Systems Engineering artifact and has limited use through the development and manufacturing process.  A Digital Engineering process keeps the model relevant through the product life cycle and operates as a single source of truth.

For the purpose of realizing the model in the electrical and electronic domains, the model must be decomposed into E/E subsystems. These subsystems are further decomposed into functional elements as Electronic Control Units (ECU), sensors, busses, and connections.

Realizing the model in the electrical and electronic domain requires a logical structure of design elements with the associated behavior and requirements. Model creation can be done with Vitech’s GENESYS product with the appropriate guidelines for model content.  For instance, the model does not typically contain specific component identification such as part numbers.

Learn more

When the design transitions from System Engineering to the implementation team, a design envelope must be clearly defined. The design team then knows what are the acceptable parameters in terms of cost, weight, size, power, etc.

Architecture verification is a design step prior to a detailed design where a partial detailed design is used to verify model requirements that can be met at high confidence. If a requirement can not be met at this phase, Systems Engineering must alter the model in the context of the entire system to enable a realizable implementation of the mode.

Once the design is verified at the architecture level meaning the verification requirements are met with high confidence, the design can move to detailed design. At this point domain-specific electronic and electrical design practices and tools are used to design a manufacturable product.  Learn more about transitioning to electrical design.

Learn more

The model must remain relevant through the product development process. This is accomplished through verification gates which are comprised of a set of verification requirements. The design can not proceed to the next development phase until the gate requirements are satisfied.  This ensures the product is consistent with the model.

As the design moves through each verification gate, the model must be updated to reflect the verification requirement status. This allows Systems Engineering to monitor the design progress in terms of meeting verification requirements. As the design progresses through the implementation process, Systems Engineering has a window into its model consistency.

Throughout the Digital Engineering process, discussions that lead to decisions must be recorded and retained for traceability. The Digital Thread provides the mechanism to hold those critical digital conversations.

Learn more

Related Resources

  • Comunicato Stampa
Luglio 07, 2021
Zuken presenta CR-8000 2021 con funzionalità avanzate di analisi e riutilizzo di progetti

CR-8000 di Zuken ottimizza la progettazione PCB a livello di sistema con miglioramenti nella simulazione analogica, nell'analisi SI e nel layout e routing intelligente

Read now
  • Comunicato Stampa
Maggio 12, 2021
Vitech’s GENESYS 2021 Brings Increase in Analytical Power to Model-Based Systems Engineering

GENESYS™ 2021 is the latest version of its model-based systems engineering development platform. This release brings a range of added features that enhance efficiency, accuracy, and flexibility—all in the service of greater analytical power for the engineer.

Read now
  • Comunicato Stampa
Marzo 29, 2021
Soluzione preconfigurata per la gestione progetti elettrici

Con il DS-E3 StarterPackage, Zuken introduce un set di funzionalità preconfigurate del suo software di gestione dati DS-E3, specificamente concepito per gestire i progetti E3.series

Read now
  • Comunicato Stampa
Marzo 04, 2021
Zuken aggiunge la tecnologia MBSE al portafoglio

Il Model-Based Systems Engineering colloca la strategia di progettazione digitale di Zuken su un nuovo fondamento -- In seguito all'acquisizione dello specialista MBSE statunitense Vitech Corporation e alla formazione di Zuken Vitech nel 2019, Zuken ha ora ufficialmente aggiunto la tecnologia GENESYS MBSE 2.0 di Vitech al suo portfoglio europeo di prodotti e servizi.

Read now
  • White Paper
Febbraio 09, 2021
Introduction to Model-Based Systems Engineering (MBSE)

Il manuale affronta i principi elementari di MBSE nel contesto di illustrazioni pratiche. Inoltre, il manuale tratta i concetti fondamentali in un modo progettato per beneficiare sia il principiante che il professionista esperto.

Read now
Un manuale per capire i concetti e le definizioni utilizzate all'interno di MBSE
  • Products
Febbraio 09, 2021

Vitech GENESYS è un insieme di strumenti software integrati per l'ingegneria dei sistemi basato su modelli. Vitech Genesys si occupa di tutti e quattro i livelli dell'ingegneria dei sistemi: requisiti, comportamento, architettura, verifica e convalida.

Read now
Un'autorevole fonte di verità per l'ingegneria dei sistemi

Hai domande? Contattaci

Per ulteriori informazioni su come Zuken può supportare il tuo progetto, contatta Zuken oggi stesso