
The TWO THINGS That Make Serial Links Work

...from 7 to 70 Gbps

Yes, just two things

Donald Telian telian@siguys.com

The TWO THINGS That Make Serial Links Work

Why DO serial links work? In this talk, Donald Telian explains that the two things that make links work are also the things that make them fail. When not done right. High-speed links work electrically when you (1) deliver 10 mV accuracy from Tx to Rx, and (2) properly equalize at the system level. As such, this talk details the primary technical requirements necessary to get these right. With tens of thousands of links in production, Telian has found serial technology to be quite robust. Indeed, when these basic things are done, the links have always worked right the first time. Nevertheless, when engineers do not do these two things, he gets the call. Uniquely positioning him to explain why serial links work, why they fail, and – most importantly – what you need to do in the design phase to make them work.

Donald Telian has worked in Signal Integrity for more than 40 years. For the last 20 years he has been a Consultant, focused on designing serial links into products from flash drives to switches with thousands of links. He has invented various SI concepts, tools, and quirks engineers use everyday to get their jobs done. He is an SI Coach, the owner of SiGuys.com, and the author of "Signal Integrity, In Practice" – a new book and in-person 2-day class that cuts through the noise to explain how to "do" SI when confronted with the data rates of today.

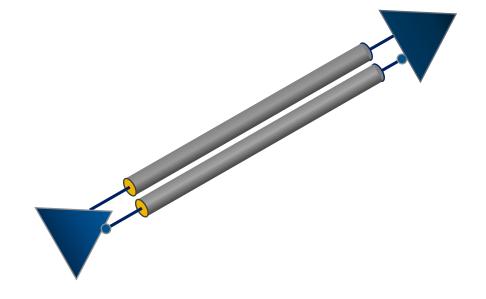
Before We Begin

Page number -

Section number ->

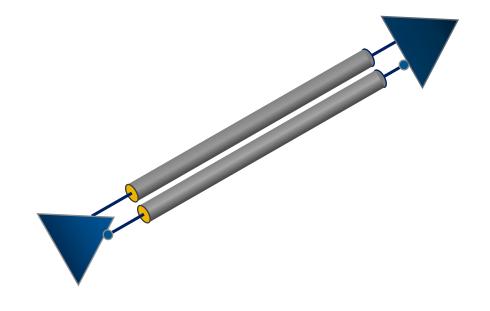
Time is limited today

- More info available in my book as shown here
- Even more info available at my LIVE workshops offered here:

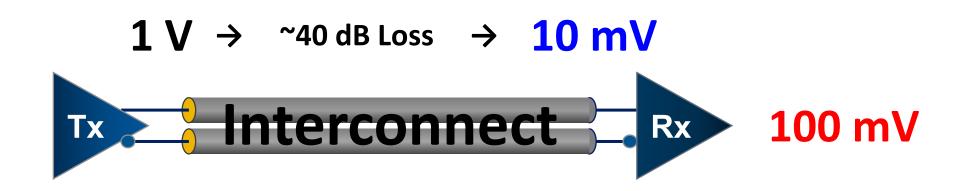


Agenda:

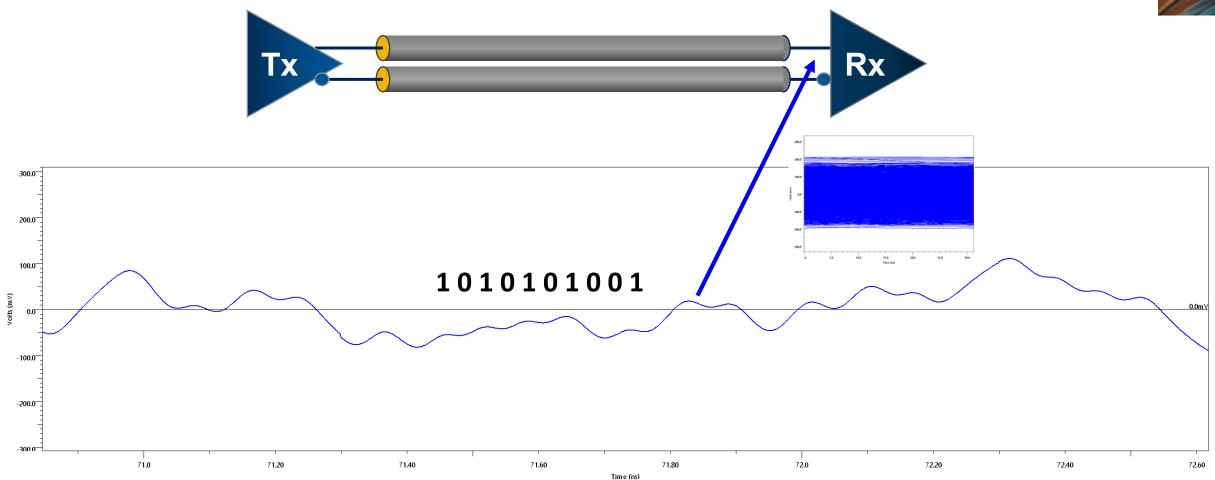
- 1. Why Serial Links Work
- 2. Why Serial Links Fail
- 3. How to Make Links Work
- 4. Welcome to Gen2 SI



Agenda:

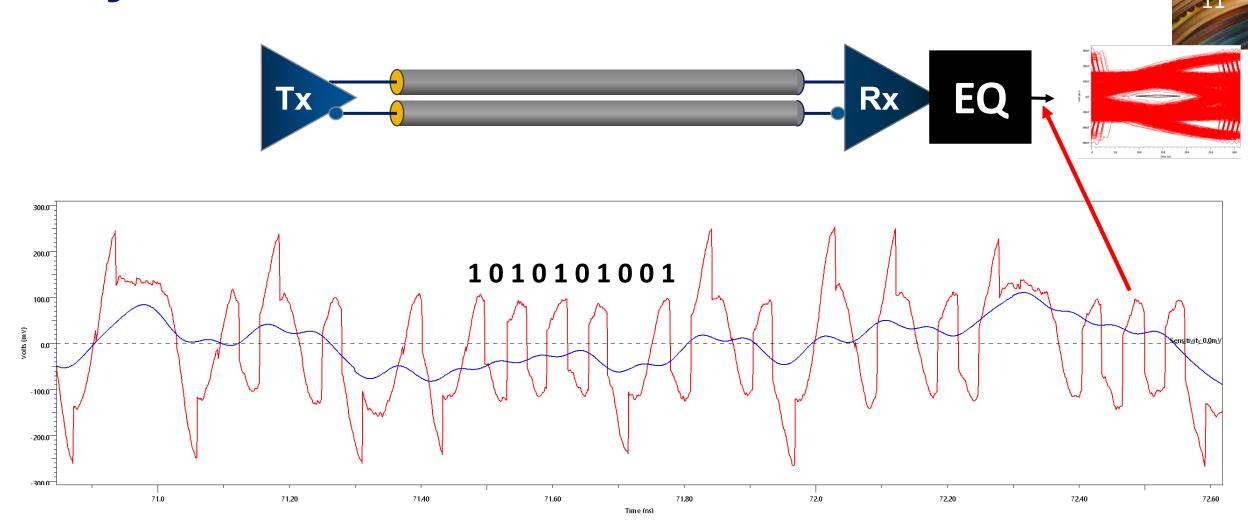

- 1. Why Serial Links Work
 - Two Reasons
 - 2. Why Serial Links Fail
 - 3. How to Make Links Work
 - 4. Welcome to Gen2 SI

A High-Speed Serial Link



Transmitter (Tx), Differential Connection (Channel), Receiver (Rx)

Why Serial Links Work, #1

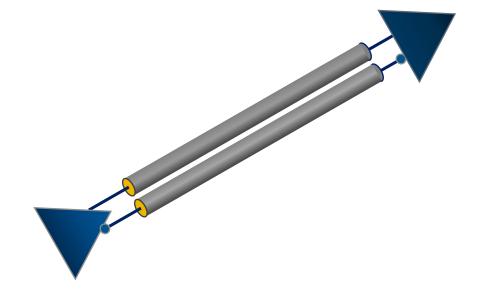


Because we transmit across PCBs (passives) with 10mV accuracy

Why Serial Links Work, #2

Because equalization (EQ) transforms our 10mV signals into logic levels

Agenda:


1. Why Serial Links Work

2. Why Serial Links Fail

3. How to Make Links Work

4. Welcome to Gen2 SI

Why Serial Links Fail?

Not surprisingly, the two reasons why serial links WORK are also the two reasons why they FAIL:

#1

INCORRECTLY CONFIGURED:

EQUALIZATION (EQ)

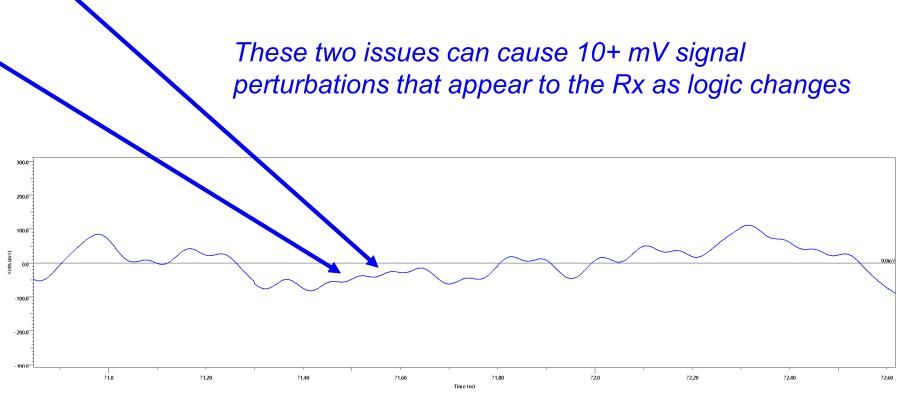
Must recover the digital signal

#2

INCORRECTLY MANAGED:

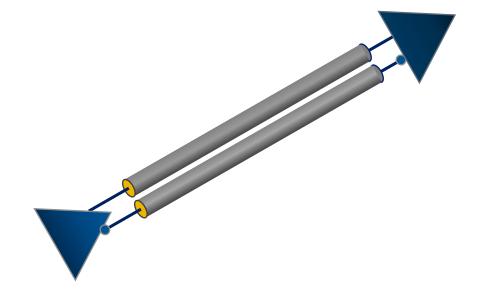
PASSIVE INTERCONNECT

Must preserve the analog signal


Top THREE Reasons Why Serial Links Fail

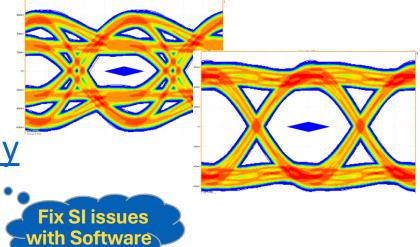
1. Incorrectly Configured EQ

2. Discontinuities


3. Crosstalk

Agenda:

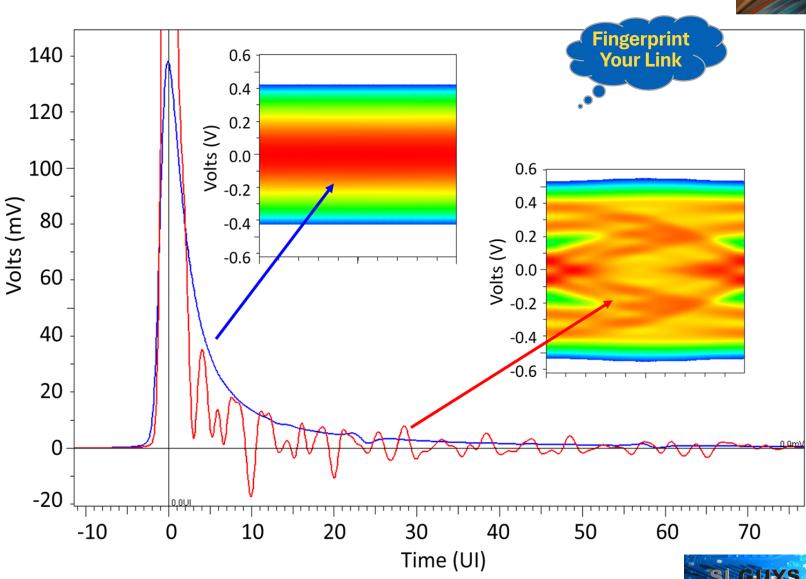
- 1. Why Serial Links Work
- 2. Why Serial Links Fail
- - 3. How to Make Links Work
 - 1. Configure EQ Correctly
 - 2. Minimize Discontinuities
 - 3. Control Crosstalk
 - 4. Welcome to Gen2 SI



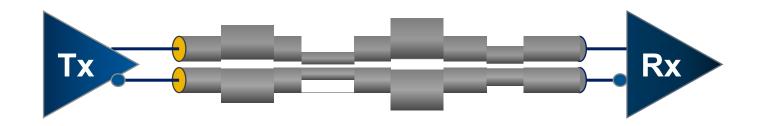
#1: Configure EQ Correctly

- The Dream: ICs will optimize by themselves
 - This challenge is very complex
 - In practice, this doesn't work well. So what can be done?
- Step 1: Get access to Tx EQ software registers
 - You can do this!
- Step 2: Turn off Tx EQ
 - Sounds ridiculous? Oddly, this <u>has solved many</u> post-hardware serial link problems

More EQ Detail

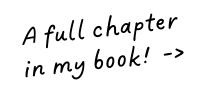

- Educate yourself on the EQ "Alphabet Soup" (acronyms)
 - CTLE, FFE, DFE, AGC, VGA, Taps/Cursors, CDR, etc.
 - These terms are as important as: stackup, return current, flight time...
- Rx EQ has become extremely powerful
 - Can handle much of the signal recovery problem by itself
 - And is typically self-optimizing (simpler, less of a system-level problem)
 - Redundant with Tx EQ, yet without amplitude penalty
 - And higher-loss systems must preserve amplitude!
- Use Tx for "pre-cursor" EQ
 - Something most Rx EQ cannot do

Channel Pulse Response = Fingerprint


3.5.2 88

- Both Loss and Discontinuities close eyes
 - As colors show for two different channels
- Pulse response reveals what type of channel you have
 - And how to EQ/fix it!
- Great topic!
 - Hands on @ my SI Class
- Today's EQ handles Loss better than Discontinuities
 - So design them out!

#2: Minimize Discontinuities



- In practice, a nice smooth connection from Tx to Rx doesn't exist
- Breakouts, AC capacitors, Connectors, Vias, etc. may present an impedance change
- Impedance changes cause signal "reflections" that damage SI

A "Discontinuity" occurs at any place in the connection where the impedance changes

Eight Ways To Fix a Discontinuity:

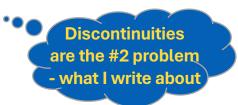
- 1. Ignore it
- 2. Remove it
- 3. Match it
- 4. Equalize it
- 5. Shorten it
- 6. Distance it
- 7. Dampen it
- 8. Ground return it

Small Enough to Ignore?

Step 1: Minimize Discontinuities

<u>Understanding Via Impedance</u>

Fixing SI Issues in Software


Fixing Stubs

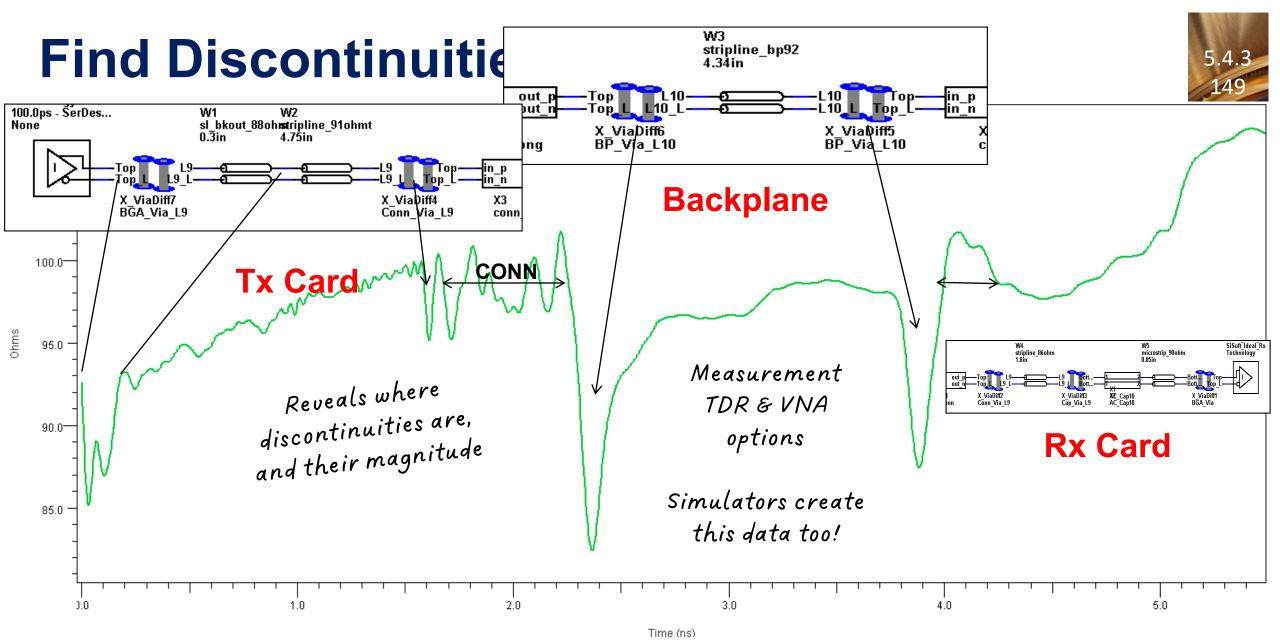
Discontinuity Proximity Effect

Trading Loss & Discontinuities

Proper Ground Return Vias

RFS = Which Discontinuites Matter

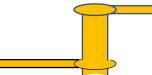
Signal	Integrity
	In Practice
	2.8

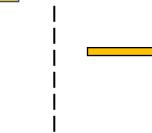

F	0
כ	U
	1

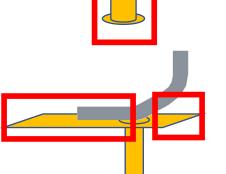
,	
7	Practical Handboo
6	or Hardware, SI, PGA & Layout
	Ingineers
	Donald Telian

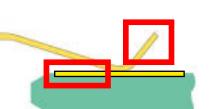
1	Z
(0
_	5
	~
1	1
~	2
7.7	11

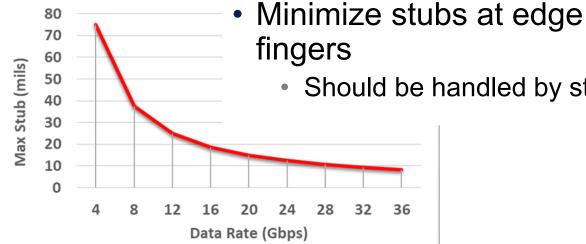
Feature	4 (5) Gbps	8 Gbps	16 Gbps	32 Gbps	64 Gbps	Unit	SIiP Section
Industry/PCIe terminology	Gen2	Gen3	Gen4	Gen5	Gen6		I.P.
Fundamental Frequency	2	4	8	16	16 (PAM4)	GHz	bo
Relevant Feature Size	160	80	40	20	20	mils	4.1, 2.1, 4.x
what's that?	traces	vias	conn pads	everything	everything		4.2, 4.3, 4.4
Max Stub	64	32	16	8	8	mils	2.5, 1.3.3
backdrills	none?	seq-lam	2 layers	per-layer	per-layer		
P/N Matching, static	10	5	2	1	1	mils	2.3
Target Bit Error Ratio (BER)	1.E-12 1.E-06						
Route Style	45°	45°	curved	curved	curved		2.4
Diff-pair Spacing (XY/Z, min)	25	25	25	30	30	mils	5.3
Insertion Loss (max)	16	22	28	36	32	dB	2.2, 3.5
Min EQ: Tx_FFE/Rx_states, CTLE	1/0	2 / 1, C	2 / 2, C	2/3,C	3 / 16, C+	#taps	3.3, 3.4, 2.7
Lengt tch metho	serpentines irregular spaced bumps		ımps		2.4		
Fiberglass wear	spread glass and rotate image 12 degrees on panel				2.6		
GND Return Vias (GRVs)	within 30 mils of signal layer transition				[48a, 3.2.2]		
Solid GND reference layers	both sides of trace (don't use microstrips)				2.3, 2.6		

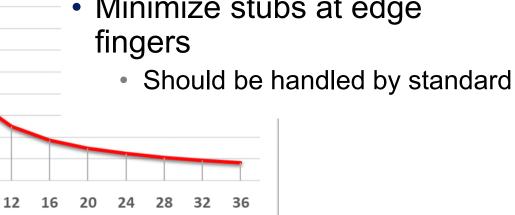



TDR is a great way to isolate & quantify discontinuities

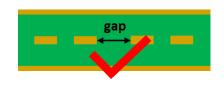


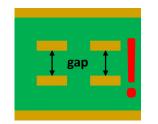

Stubs: Bad Discontinuities

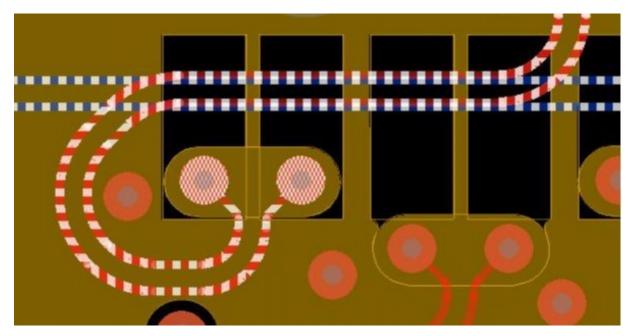



8 to 16 Gbps failures

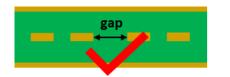
Remove stubs at solder pads

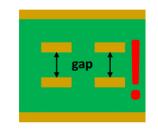

25 to 64 Gbps failures




#3: Control Crosstalk

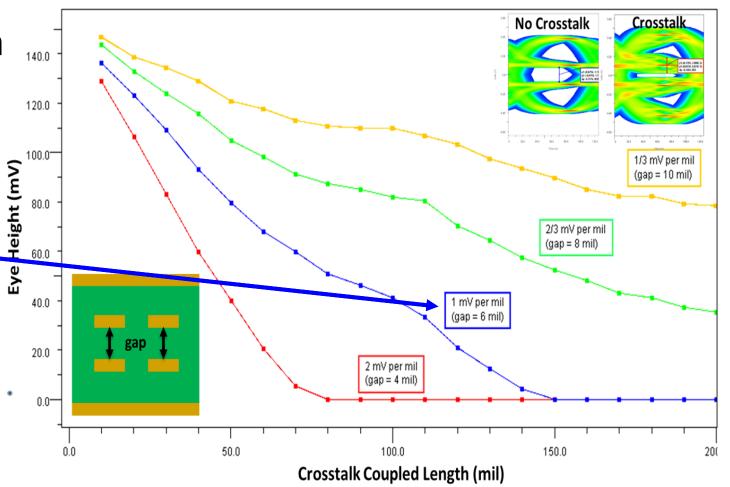
- Not where you expect
- Plane cutouts
 - Used to match impedance
 - Connector and Cap pads
- Cap Void Example
 - Near-end Tx (red)
 - Far-end Rx (blue)
 - Combined coupling = 120 mils




Always use route keepouts under voids, shields, 30+ mil gaps

Best fix I've found is to visually check layer to layer

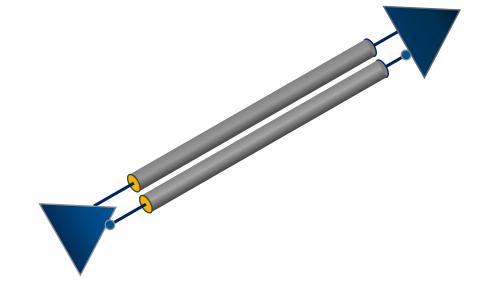
10 mV Accumulates Fast!



Eye height vs coupled length

Colors are gap distances

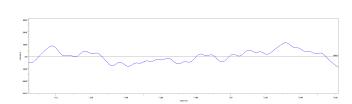
- 6 mil gap:
 - Typical PCB distance
 - 1 mV per 1 mil of coupling
 - Can close an eye

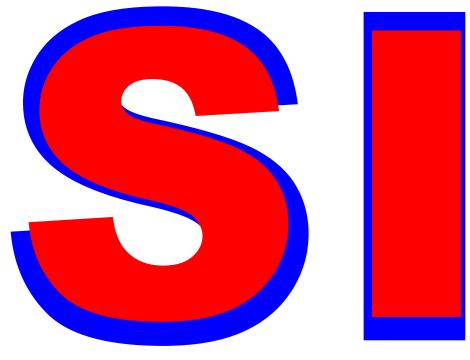


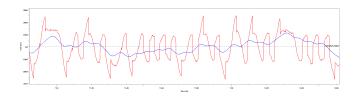
Agenda:

- 1. Why Serial Links Work
- 2. Why Serial Links Fail
- 3. How to Make Links Work
- 4. Welcome to Gen2 SI

Serial Links Define "High-Speed"


- Serial Links have changed the way we "do" signal integrity (SI)
 - I've simplified this new practice into "Gen2 SI"
- Serial revolution began in ~2001
 - Began at 1 Gigabits per second (Gbps), now 50+ Gbps
- 2002 Intel declares: cheaper to use transistors than PCB traces
 - Silicon integration becomes continual enabler of higher bandwidth


Silicon Integration Enabled Gen2 SI



Signal Integrity

Silicon Integration

Signal Integrity + Silicon Integration = SI + SI = Gen2 SI

Technical Comparison

- ICs \rightarrow 1,000,000x
- PCBs \rightarrow 4x
- Data Rates \rightarrow 5,000x

In practice,

SI is simpler now

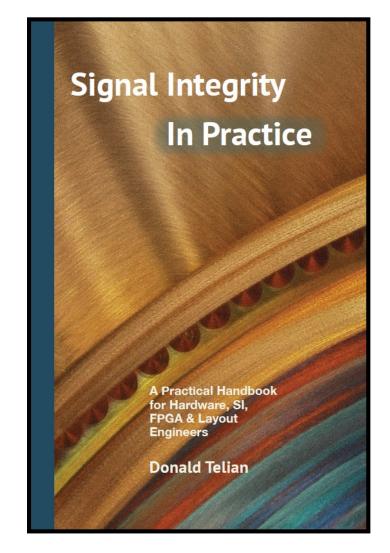
with Gen2 SI

Gen1 Signal Integrity	Gen2 Signal Integrity		
1986 to 2006	2007 to Present		
Parallel	Serial		
8 MHz to 3 GHz	4 to 70 GHz		
System of ICs	IC dictates System		
Mysterious "black magic"	Basic Science		
Buffer VI/Slew	SerDes Equalization		
Trace Length Rules	P/N Symmetry		
Common & Source Clocks	Recovered Clock		
AC Timings	Eye Diagrams, BER		
Topology / Termination	Point-to-Point		
Trace Impedance	Feature Impedance		
Flight Time	Loss, Discontinuities		
Ground Planes	Ground Returns/Grids		
Stackup	Weave & Copper Profiles		

LIVE SI Class Teaching Tour!

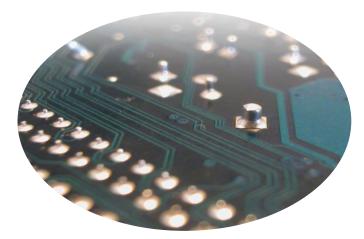
- Munich Germany Oct 29 & 30 2025
 - In partnership with Zuken
- Private/Corporate Classes Too!

"out of the design cave"



How I Can Help:

https://siguys.com/


Available at Amazon
Hardcover or Kindle

THANK YOU

Let's achieve Signal Integrity, in Practice

Donald Telian

telian@siguys.com

Copyright © 2025, SiGuys, Slide 29