Get to Know Your SPICEs

Menu

Since the first implementation of electronic simulation in the schematic capture software realm, circuit designers have been using SPICE for analog and digital “what-if analysis”. Engineering students adopted it for their studies and then continued using it throughout their careers. PCB designers typically have little or no experience with SPICE applications. No worries, follow along with me and get to know your SPICEs!

The history of SPICE

I reached out to a colleague, Lance Wang, Solutions Architect for the Zuken SOZO center, to get his input. Lance has extensive knowledge in this area and was able to provide some historical information along with clear explanations for SPICE applications.

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose, open-source analog electronic circuit simulator. It is a program used for integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior.

Circuit simulation programs – of which SPICE and derivatives are the most prominent – take a text netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their connections, and translate this description into equations for solving. The resulting general equations are nonlinear, differential algebraic equations that are solved using implicit integration methods, Newton’s method and sparse matrix techniques.

SPICE was developed at the Electronics Research Laboratory of the University of California, Berkeley by Laurence Nagel with direction from his research advisor, Prof. Donald Pederson.

  • SPICE1 was first presented at a conference in 1973 and used in nodal analysis to construct the circuit equations.
  • SPICE2 was a much-improved program with more circuit elements, variable timestep transient analysis using either the trapezoidal (second order Adams-Moulton method) or the Gear integration method (also known as BDF), equation formulation via modified nodal analysis (avoiding the limitations of nodal analysis). The last version of SPICE2 was 2G.6 in 1983.
  • SPICE3 was developed by Thomas Quarles (with A. Richard Newton as advisor) in 1989.

The first commercial version of SPICE was ISPICE, an interactive version on a timeshare service, National CSS. The most prominent commercial versions of SPICE include HSPICE (now owned by Synopsys, Inc.) and PSPICE (now owned by Cadence Design Systems). The academic spinoffs of SPICE include XSPICE, developed at Georgia Tech, which added mixed analog/digital “code models” for behavioral simulation, and CIDER (previously CODECS, from UC Berkeley/Oregon State Univ.), which added semiconductor device simulation. SPICE, XSPICE and CIDER have been integrated into open source NGSPICE. The integrated circuit industry adopted SPICE quickly, and until commercial versions became well-developed, many IC design houses had proprietary versions of SPICE.

Where is SPICE today?

Today a few IC manufacturers continue to develop SPICE-based circuit simulation programs. Among these are ADICE at Analog Devices, LTspice at Linear Technology (available to the public as freeware), Mica at Freescale Semiconductor and TINA at Texas Instruments. Similarly, Linear Technology (Analog Devices), Texas Instruments makes available a freeware Windows version of the TINA software (called TINA-TI), which also includes their version of SPICE and comes preloaded with models for the company’s integrated circuits. Analog Devices offers a similar free tool called ADIsimPE (based on the SIMetrix/SIMPLIS implementation of SPICE). Other companies maintain internal circuit simulators which are not directly based upon SPICE. Among them PowerSpice at IBM, TITAN at Infineon Technologies, Lynx at Intel Corporation, and Pstar at NXP Semiconductor.

What is the difference from HSPICE, PSPICE, LTspice, TINA-TI and ADIsimPE? They are all based on SPICE3 shared with common syntaxes and elements. The differences are new add-on features, devices, elements and analysis modes. For examples, IBIS models, w-elements, s-parameters and Monto Carlo analysis, etc. HSpice is the most advanced SPICE simulator on the market at this time. Most EDA tool vendors support SPICE2/3 syntaxes and the popular EDA simulators often take HSpice syntax netlist directly for simulations.

What about Zuken’s SI/PI simulator? Zuken’s simulator is also based on SPICE3 and includes advanced enhancements, such as IBIS models, w-elements, AC/DC/Transient Analysis, etc., with an integrated Chip, Package and Board Co-Design use case environment.

Hopefully this dispels the notion that PSPICE is paprika and gives you a bit more knowledge about SPICE applications ands SPICE in general.


Learn more about our software for advanced PCB Design.

PCB Design Software

References:

Andy Buja
Andy Buja
Technical Account Manager - Senior Applications Engineer
Andy Buja is a Technical Account Manager for eCADSTAR, helping customers successfully implement new EDA solutions. His work is focused on ensuring customers move forward quickly and efficiently with the PCB design and engineering solutions they have chosen. He is a long time member of the Zuken team with a passion for boating, and off-shore kayak fishing on Cape Cod in his "Stripah Snipah."
  • Webinar
July 06, 2020
Practical Signal Integrity for improved EMI Control in PCB Design

In our webinar we will provide an introduction to the challenges of signal integrity and the underlying physical effects. This will provide the basis for practical tips to address the related challenges during PCB design.

WATCH NOW
  • Case Study
June 30, 2020
ONTEC

ONTEC faced a difficult challenge: develop a multimedia broadcasting product while complying with a customer’s electromagnetic interference requirements, all within a tight development schedule. ONTEC used Zuken’s CR-8000 with Keysight’s ADS (including SiPro) to meet the requirements of the challenge

Read now
ONTEC uses CR-8000 to develop a next-generation product in less time despite rigorous design constraints
  • Press Release
June 16, 2020
CR-8000 2020

Key development themes for CR-8000 2020 are superior design efficiency, comprehensive system-level design and verification, and support for the latest advancements in packaging technology.

Read now
FPGA optimization, skew group routing, back-drilled vias, electro-mechanical co-design,flex-rigid PCBs, multi-domain analysis, tile bump, 3D wire desi...
  • Webinar
November 15, 2019
How to be First to Market with DDR5!

DDR5 is the latest generation of memory. In this joint webinar with Keysight Technologies, we’ll begin with pre-layout simulation, then transition to CR-8000. The design will then be verified by Electromagnetic (EM) simulation and system simulations in Keysight ADS, in order to build confidence in the final DDR5 design.

WATCH NOW